
Chapter 9

Numeric

Unless stated otherwise the alias n denotes a standard 32 bit integer.

9.1 Primality Test

A simple algorithm that determines whether or not a given integer is a prime
number, e.g. 2, 5, 7, and 13 are all prime numbers, however 6 is not as it can
be the result of the product of two numbers that are < 6.

In an attempt to slow down the inner loop the
√

n is used as the upper
bound.

1) algorithm IsPrime(n)
2) Post: n is determined to be a prime or not
3) for i ← 2 to n do
4) for j ← 1 to sqrt(n) do
5) if i ∗ j = n
6) return false
7) end if
8) end for
9) end for
10) end IsPrime

9.2 Base conversions

DSA contains a number of algorithms that convert a base 10 number to its
equivalent binary, octal or hexadecimal form. For example 7810 has a binary
representation of 10011102.

Table 9.1 shows the algorithm trace when the number to convert to binary
is 74210.

72



CHAPTER 9. NUMERIC 73

1) algorithm ToBinary(n)
2) Pre: n ≥ 0
3) Post: n has been converted into its base 2 representation
4) while n > 0
5) list.Add(n % 2)
6) n ← n/2
7) end while
8) return Reverse(list)
9) end ToBinary

n list
742 { 0 }
371 { 0, 1 }
185 { 0, 1, 1 }
92 { 0, 1, 1, 0 }
46 { 0, 1, 1, 0, 1 }
23 { 0, 1, 1, 0, 1, 1 }
11 { 0, 1, 1, 0, 1, 1, 1 }
5 { 0, 1, 1, 0, 1, 1, 1, 1 }
2 { 0, 1, 1, 0, 1, 1, 1, 1, 0 }
1 { 0, 1, 1, 0, 1, 1, 1, 1, 0, 1 }

Table 9.1: Algorithm trace of ToBinary

9.3 Attaining the greatest common denomina-
tor of two numbers

A fairly routine problem in mathematics is that of finding the greatest common
denominator of two integers, what we are essentially after is the greatest number
which is a multiple of both, e.g. the greatest common denominator of 9, and
15 is 3. One of the most elegant solutions to this problem is based on Euclid’s
algorithm that has a run time complexity of O(n2).

1) algorithm GreatestCommonDenominator(m, n)
2) Pre: m and n are integers
3) Post: the greatest common denominator of the two integers is calculated
4) if n = 0
5) return m
6) end if
7) return GreatestCommonDenominator(n, m % n)
8) end GreatestCommonDenominator



CHAPTER 9. NUMERIC 74

9.4 Computing the maximum value for a num-
ber of a specific base consisting of N digits

This algorithm computes the maximum value of a number for a given number
of digits, e.g. using the base 10 system the maximum number we can have
made up of 4 digits is the number 999910. Similarly the maximum number that
consists of 4 digits for a base 2 number is 11112 which is 1510.

The expression by which we can compute this maximum value for N digits
is: BN − 1. In the previous expression B is the number base, and N is the
number of digits. As an example if we wanted to determine the maximum value
for a hexadecimal number (base 16) consisting of 6 digits the expression would
be as follows: 166 − 1. The maximum value of the previous example would be
represented as FFFFFF16 which yields 1677721510.

In the following algorithm numberBase should be considered restricted to
the values of 2, 8, 9, and 16. For this reason in our actual implementation
numberBase has an enumeration type. The Base enumeration type is defined
as:

Base = {Binary ← 2, Octal ← 8, Decimal ← 10,Hexadecimal ← 16}

The reason we provide the definition of Base is to give you an idea how this
algorithm can be modelled in a more readable manner rather than using various
checks to determine the correct base to use. For our implementation we cast the
value of numberBase to an integer, as such we extract the value associated with
the relevant option in the Base enumeration. As an example if we were to cast
the option Octal to an integer we would get the value 8. In the algorithm listed
below the cast is implicit so we just use the actual argument numberBase.

1) algorithm MaxValue(numberBase, n)
2) Pre: numberBase is the number system to use, n is the number of digits
3) Post: the maximum value for numberBase consisting of n digits is computed
4) return Power(numberBase, n) −1
5) end MaxValue

9.5 Factorial of a number

Attaining the factorial of a number is a primitive mathematical operation. Many
implementations of the factorial algorithm are recursive as the problem is re-
cursive in nature, however here we present an iterative solution. The iterative
solution is presented because it too is trivial to implement and doesn’t suffer
from the use of recursion (for more on recursion see §C).

The factorial of 0 and 1 is 0. The aforementioned acts as a base case that we
will build upon. The factorial of 2 is 2∗ the factorial of 1, similarly the factorial
of 3 is 3∗ the factorial of 2 and so on. We can indicate that we are after the
factorial of a number using the form N ! where N is the number we wish to
attain the factorial of. Our algorithm doesn’t use such notation but it is handy
to know.



CHAPTER 9. NUMERIC 75

1) algorithm Factorial(n)
2) Pre: n ≥ 0, n is the number to compute the factorial of
3) Post: the factorial of n is computed
4) if n < 2
5) return 1
6) end if
7) factorial ← 1
8) for i ← 2 to n
9) factorial ← factorial ∗ i
10) end for
11) return factorial
12) end Factorial

9.6 Summary

In this chapter we have presented several numeric algorithms, most of which
are simply here because they were fun to design. Perhaps the message that
the reader should gain from this chapter is that algorithms can be applied to
several domains to make work in that respective domain attainable. Numeric
algorithms in particular drive some of the most advanced systems on the planet
computing such data as weather forecasts.


